

## ESSENTIAL MATHEMATICS FOR MACHINE LEARNING $$\mathbbmss{S22}$$

|                |                    | PR                                                                                           | OF. SANJEEV KUMAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|----------------|--------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PROF           | ESSOR'S NAME       | PR                                                                                           | OF. S.K. Gupta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| DEPA           | RTMENT             | De                                                                                           | partment of Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| INSTI          | TUTE               | IIT                                                                                          | Roorkee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| COURSE OUTLINE |                    | Ma<br>of :<br>app<br>Va<br>ma<br>alg<br>hav<br>this<br>con<br>pan<br>cal<br>hav<br>Ap<br>wit | Machine learning (ML) is one of the most popular topics<br>of nowadays research. This particular topic is having<br>applications in all the areas of engineering and sciences.<br>Various tools of machine learning are having a rich<br>mathematical theory. Therefore, in order to develop new<br>algorithms of machine/deep learning, it is necessary to<br>have knowledge of all such mathematical concepts. In<br>this course, we will introduce these basic mathematical<br>concepts related to the machine/deep learning. In<br>particular, we will focus on topics from matrix algebra,<br>calculus, optimization, and probability theory those are<br>having strong linkage with machine learning.<br>Applications of these topics will be introduced in ML<br>with help of some real-life examples. |  |  |
| COURSE DETAILS |                    |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| S.<br>No       | Module ID/ Lecture |                                                                                              | Lecture Title/Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 1              | L1                 |                                                                                              | Introduction to course and vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                | •                  |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |

| 2  | L2  |                                                         |
|----|-----|---------------------------------------------------------|
|    |     | Vector Spaces: Definition and Examples                  |
| 3  | L3  | Vector Subspaces: Examples and Properties               |
| 4  | L4  | Vector Subspaces: Basis and Dimensions                  |
| 5  | L5  | Linear Transformations                                  |
| 6  | L6  | Norms and Spaces                                        |
| 7  | L7  | Orthogonal Complements and Projection operator          |
| 8  | L8  | Eigen pairs and properties                              |
| 9  | L9  | Special matrices and Properties                         |
| 10 | L10 | Least Square Approximation and Minimum Norm<br>Solution |
| 11 | L11 | Singular Value Decomposition                            |
| 12 | L12 | SVD: Properties and Applications                        |
| 13 | L13 | Low Rank Approximation                                  |
| 14 | L14 | Gram Schmidt process                                    |
| 15 | L15 | Polar Decomposition                                     |
| 16 | L16 | Principal Component Analysis-I                          |
| 17 | L17 | PCA-II: Derivation and Examples                         |
| 18 | L18 | Linear Discriminant Analysis                            |
| 19 | L19 | Minimal Polynomial and Jordan Canonical Form-I          |
| 20 | L20 | Minimal Polynomial and Jordan Canonical Form-II         |
| 21 | L21 | Basic Concepts of Calculus-I                            |
| 22 | L22 | Basic Concepts of Calculus-II                           |
| 23 | L23 | Convex Sets and Functions                               |
| 24 | L24 | Properties of convex functions-I                        |

| 25 | L25 | Properties of convex functions-II              |
|----|-----|------------------------------------------------|
| 26 | L26 | Unconstrained Optimization                     |
| 27 | L27 | Constrained Optimization-I                     |
| 28 | L28 | Constrained Optimization-II                    |
| 29 | L29 | Steepest Descent Method                        |
| 30 | L30 | Newton's and Penalty Function Methods          |
| 31 | L31 | Review on Probability                          |
| 32 | L32 | Bayes' Theorem and Random Variables            |
| 33 | L33 | Expectation and Variance                       |
| 34 | L34 | Few Probability Distributions                  |
| 35 | L35 | Joint Probability Distributions and Covariance |
| 36 | L36 | Introduction to SVM                            |
| 37 | L37 | Error minimizing LPP                           |
| 38 | L38 | Concepts of Duality                            |
| 39 | L39 | Hard Margin Classifier                         |
| 40 | L40 | Soft Margin Classifier                         |

**References if Any:**